
IBM® Workplace Forms™ Server — Deployment Server

Administration Manual

Version 2.6.1

G325-2594-00

���

Note

Before using this information and the product it supports, read the information in “Notices,” on page 51.

First Edition (September 2006)

This edition applies to version 2.6.1 of IBM Workplace Forms Server — Deployment Server (product number

L-DSED-6RFRFZ) and to all subsequent releases and modifications until otherwise indicated in new editions.

This edition replaces version 1, release 2.6.0 of Workplace Forms Server — Deployment Server.

© Copyright International Business Machines Corporation 2003, 2006. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Introduction

Welcome to IBM® Workplace Forms™ Server - Deployment Server. Deployment

Server uses standard web browser technology to automatically distribute software

to your users. It determines what software is on your user’s computers, and

installs new software or upgrades existing software depending on your needs.

You can easily incorporate Deployment Server into any web site, either by setting

up a central distribution page or by setting up automatic downloads on particular

pages throughout your site. In either case, Deployment Server makes it easy to

distribute new software or to upgrade existing software through a simple web

interface.

About This Manual

This manual provides instructions for installing and configuring Deployment

Server. Each section explains a different task in the setup process, and progresses

from general information about the architecture of Deployment Server to specific

details and instructions.

If you are setting up Deployment Server for the first time, you should begin by

reading this introduction and the ″Overview of Deployment Server″ . Then refer to

″Setting Up Deployment Server″ for an outline of the setup process. The setting up

section will direct you to the correct pages in the manual for more information

about each step.

Who Should Read This Manual

This manual is intended for System Administrators who have experience with both

scripting and simple programming. Because Deployment Server does not have an

administrative front end, you will need to write a number of scripts to configure

the system.

If you do not have scripting or programming experience, this manual will provide

you with an overview of the installation process and an explanation of how

Deployment Server works; however, you may find the configuration sections more

challenging to understand.

Document Conventions

This manual uses the following conventions:

< > Placeholders are enclosed by the less than and greater than symbols. In

general, placeholders identify information you must provide. For example,

the following path uses a placeholder to indicate the directory in which

you installed ACME WebProgram:

c:\<Installation Directory>\ACME\WebProgram\3.0\

© Copyright IBM Corp. 2003, 2006 1

Key Terms

This manual uses a number of key terms. While these terms are defined in the

appropriate sections of the manual, they are also used throughout, and may be

confusing when first encountered. For your convenience, these terms are defined

here:

Alias Aliases are similar to variables in programming. They allow you to store

information by creating a name for that information, and then using that

name later to refer to that information. Aliases are used in manifests.

Application

Each piece of software you deploy through Deployment Server is called an

application. Deployment Server deploys each application as a collection of

one or more packages.

Manifest

A manifest is an instruction set that Deployment Server reads when

updating a user’s computer. There are three types of manifests, each

providing instructions for different aspects of the update process. You can

also think of a manifest as a ″script″.

Package

Each package is a set of installation files for either a complete application

or a portion of an application. Applications are often divided into several

packages to allow more control over which portions of an application are

installed. For example, if you deploy a spell checker, you may want the

user to choose which dictionaries are installed. In this case, you would

deploy each dictionary as a separate package that the user could decide

whether to install.

Backwards Compatibility

This version of Deployment Server is fully compatible with all previous versions of

Deployment Server. Furthermore, it supports all versions of Workplace Forms and

PureEdge-branded Viewer products..

2

Overview of Deployment Server

Deployment Server allows you to deploy software to your users through standard

web browsers, including Microsoft® Internet Explorer and Firefox. Deployment

Server automates this process, requiring little or no user interaction, and ensures

that the right components are installed for each user.

Deployment Server relies on three key components: the Deployment Server applet,

which manages the deployment process, the Deployment Server servlet, which

passes files to the applet, and the Deployment Server file system, which stores the

instructions and the files the applet uses to install the software. The applet runs in

the user’s web browser, and communicates with the servlet, which is installed on

your server.

This following sections outline the architecture of the Deployment Server system,

and step you through the end-user experience.

System Architecture

Deployment Server has three key components:

v An applet that controls the installation of software on the end-user’s computer.

v A servlet that communicates with the applet and passes both instructions and

files to the applet.

v A file system that stores all of the instructions and files necessary for

deployment.

The following diagram shows how these components work together:

Web ServerClient Computer

Web Browser

DS
Applet

DS
Servlet

DS File
System

The file system stores two types of files, called manifests and packages. Each

manifest is a set of instructions that the applet follows when deploying an

application. Each package is a set of installation files that may install either a

complete application or a portion of an application.

A typical software deployment follows these steps:

© Copyright IBM Corp. 2003, 2006 3

1. The user opens a web page that contains the Deployment Server applet.

 2. The applet runs, and requests updated instructions (the current manifests)

from the servlet.

 3. The servlet retrieves the manifests from the file system, and passes them to

the applet.

 4. The applet reads the manifests and checks the configuration of the user’s

computer.

 5. Based on the logic in the manifests, the applet decides which packages to

install.

 6. The applet requests the necessary packages from the server.

 7. The server retrieves the packages from the file system, and passes them to the

applet.

 8. The applet runs each package in turn.

 9. When run, each package installs an application or a portion of an application

on the user’s computer.

10. The applet monitors the installation, and loads a success or failure page,

depending on the results.

During installation, the user will normally see a dialog that lists the components

being installed, and may have the option of refusing some or all of the

components. Once the installation is complete, the dialog will disappear and the

applet will load a success or error page.

End-User Experience

Deployment Server is designed to require minimal interaction from your users.

While Deployment Server always shows your users some information about the

installation, you can decide whether your users can interact with the installation.

This allows you to create completely automated installations.

In general, your users will access Deployment Server through a central distribution

site, or as part of an online process (such as opening an account with your

organization). Before launching Deployment Server, your web site should detect

the user’s configuration, and ensure they have Java™ and Javascript enabled.

Your site should then direct the user to a web page containing the Deployment

Server applet. If the user has never used Deployment Server, or if you have

recently changed or upgraded the Deployment Server applet, they will see a

Security Warning asking them if they trust the applet.

The user must accept the applet to continue. If they do not accept the applet,

Deployment Server will load a cancellation page in their browser and stop the

deployment process.

If the user accepts the applet, the browser will load and run the applet, and the

applet will initialize itself. While initializing, the applet displays its progress:

4

Loading . . .

Retrieving Applications

Retrieving Packages

Examining Applications

Examining Packages

Cancel

Complete

Complete

Examining

Complete

However, initialization does not take long, and in most cases the user will not have

time to read the dialog box.

Next, the applet lists the applications and packages that Deployment Server is

going to install:

IBM(R) Workplace Forms(tm) Server - Deployment Server

Component

ACME WebProgram

Locale Components

Spellchecker

Core Components

Version Installed

3.0.0

2.4.0

3.0.0

3.0.0

OK Cancel

Select packages to retrieve and then press OK.

Select

Optional

Required

Required

Optional

At this point, the user may be able to select which packages to install. The applet

also shows which version of each application and package Deployment Server is

deploying, and which version Deployment Server has detected on the user’s

computer.

The user can cancel the installation at this stage, or they can select the packages

they want and continue.

Deployment Server then begins installing the applications. During installation,

Deployment Server displays its progress:

IBM(R) Workplace Forms(tm) Server - Deployment Server

Component

ACME WebProgram

Locale Components

Spellchecker

Core Components

Version

3.0.0

3.0.0

3.0.0

2.4.0

Expanding

Cancel

Once Deployment Server has completed the installation, the applet window closes

and the applet loads a result page in the user’s browser.

Overview of Deployment Server 5

6

Setting Up Deployment Server

Deployment Server runs on a web server using a servlet runner. Before you can set

up Deployment Server, you should ensure that you have the right hardware and

software configuration on your server. You should also confirm that your users

have the necessary configuration on their computers.

Once you have confirmed that you meet the requirements, follow the steps

outlined in the setup instructions.

System Requirements

Deployment Server runs both on a server and on your user’s computers. Therefore,

Deployment Server requires specific software to be installed both on the server and

on end-user computers.

For detailed information regarding Deployment Server system requirements, see

http://www.ibm.com/support/docview.wss?rs=2357&uid=swg27008291.

Setup Instructions

The setup process varies depending on whether you are deploying applications

supplied by IBM, or whether you are deploying your own applications.

For a complete explanation of packages, and the process involved in creating your

own packages, see “Using Packages” on page 19.

Setting Up to Deploy Applications Supplied by IBM

If you are deploying applications supplied by IBM, each application will be

supplied as a single zip file that contains all of the manifests and packages

required to deploy the application. You must copy this file to the server level of

your Deployment Server file system, and unzip the file to create the appropriate

sub-directories.

The following table outlines the steps for setting up Deployment Server. Each step

is explained in detail on the page indicated:

1. “Configuring Deployment Server” on page 9

2. “Using the Deployment Server File System” on page 15

3. Unzip the application zip file (provided by IBM) in the appropriate server

directory — this will create the application and package levels of the file

system, including the necessary manifest and package files.

4. “Setting Up Your Web Page to Use Deployment Server” on page 43

Setting Up to Deploy Your Own Applications

If you are deploying your own applications, you will need to create a collection of

manifests and packages for each application you want to deploy, and then copy

those files to the Deployment Server file system. The following table outlines the

steps for setting up Deployment Server. Each step is explained in detail on the

page indicated:

1. “Configuring Deployment Server” on page 9

© Copyright IBM Corp. 2003, 2006 7

http://www.ibm.com/support/docview.wss?rs=2357&uid=swg27008291

2. “Using the Deployment Server File System” on page 15

3. “Creating Your Own Packages” on page 19

4. “Copying Packages to the Deployment Server File System” on page 20

5. “Creating a Master Manifest” on page 23

6. “Creating Manifests” on page 22

7. “Creating a Package Manifest” on page 26

8. “Adding the Manifests to Your File System” on page 42

9. “Setting Up Your Web Page to Use Deployment Server” on page 43

8

Configuring Deployment Server

The Deployment Server is made up of three major components. These are:

v The virtual server that manages the end-user experience through a number of

jsp pages.

v Three applets that manage the interaction between the user computers and the

Deployment Server. The user’s browser determines which applet is used.

v The servlet that manages the server-side tasks.

Before running Deployment Server, you must configure the system and sign the

applets. This allows you to customize Deployment Server to your environment,

and authenticates the applet. Java requires authentication of the applet to ensure it

has not been tampered with before allowing it to install software onto users’

computers. Signing the applet also ensures that it contains the URL of the web

server that is providing the deployment service, and informs users who is issuing

the software they are accepting.

Note: The Deployment Server is installed as part of the Workplace Forms Server -

API installation process. To view the Deployment Server files, open the API

installation directory.

The following table outlines the steps you must follow to configure the

deployment server and sign the applets:

 Step Section

1. Customize the jsp pages to better reflect

your organization.

“Setting Up Your Web Page to Use

Deployment Server” on page 43

2. Download the tools that allow you to

create and sign .cab files.

“Downloading Additional Tools”

3. Obtain and prepare the code-signing

certificates.

“Obtaining Code Signing Certificates” on

page 10

4. Update WAR file (WAS 6.0 systems only). “Updating the WAR file” on page 10

5. Configure the Signing Tool to:

v Configure both the servlet and the applets.

v Produce two WAR files that are configured

and ready for installation on your server.

v Produce the applets.

“Configuring the Signing Tool” on page 11

6. Run the Signing Tool. “Using the Signing Tool” on page 13

7. Install the WAR files produced by the

Signing Tool.

“Installing the WAR files” on page 14

8. Copy the applets produced by the Signing

Tool to your server.

Downloading Additional Tools

Before you can use the Signing Tool, you must download and install the following

tools:

v Microsoft Cabinet Software Development Kit — Allows the Signing Tool to

create .cab files.

© Copyright IBM Corp. 2003, 2006 9

v Authenticode for Internet Explorer 5.0 — Allows the Signing Tool to sign .cab

files.

Microsoft Cabinet Software Development Kit

You can download this kit from Microsoft.

Once you have downloaded it, install it on the computer that you will use to sign

the applets. You can install it in any directory.

Once installed, locate the cabarc.exe file. You will need to know this location later.

Authenticode for Internet Explorer 5.0

This tool is available as part of the Microsoft .NET Framework SDK. You can

download this software from the Microsoft website. Deployment Server supports

versions 1.1 and 2.0 of the .NET framework.

Once you have downloaded the SDK, install it on the computer that you will use

to sign the applets, then locate the signcode.exe file. You will need to know the

location of this file later.

Obtaining Code Signing Certificates

Deployment Server uses two different applets: one for Microsoft browsers and one

for Mozilla browsers. Before the applets are run in either browser, the browser will

ask your users if they want to trust the applet. Because of this, the applets are

signed as part of the configuration process, so that your users know you have

approved the use of the applets.

To sign the applets, you will need to obtain a code signing certificate and install it

in your local copy of Internet Explorer. You can obtain this certificate from digital

certificate vendors, such as VeriSign.

Preparing the Code Signing Certificate

Deployment Server uses the code signing certificate to sign applets intended for

use in both IE and Firefox. To sign the IE applet, Deployment Server uses the .spc

and .pvk files that are provided by your certificate vendor. However, to sign the

Mozilla applet, you must also import that certificate into your Microsft browser

and then export it as a PKCS#12 (.pfx) file.

Write down the location of the .pfx file, as you will need to know it later.

Updating the WAR file

If you are using Deployment Server with WebSphere® Application Server (WAS)

6.0, you must update the default Deployment Server WAR file provided with the

installation. If you are using another application server or servlet runner, such as

WAS 5.1, JRun, or Tomcat, you will not need to perform this task.

To update the WAR file:

1. Open the Deployment Server installation directory.

2. Rename the IDS.WAR file.

v For example: IDS-old.war.
3. Rename the IDS-WAS60.WAR file to IDS.war.

10

http://support.microsoft.com/default.aspx?scid=KB%3ben-us%3b310618

Configuring the Signing Tool

The Signing Tool reads configuration information from a configuration file. The

configuration file is a plain text file that contains a series of tag value pairs.

A sample configuration file is provided with Deployment Server. We recommend

that you edit this file to reflect your own configuration rather than creating a new

file. You can also rename the file as you like if you need to keep separate versions

(for example, you will need a different configuration for each virtual server you

are running).

The following table lists the tag value pairs used in the configuration file:

 Tag Value

applet-install_config.

properties.server_url

The URL of the Deployment Server servlet. This URL is

hardcoded into the applet, and used to contact the servlet.

The Deployment Server servlet is part of the ServerIDS.WAR

file that is produced by the Signing Tool. The URL you need

to use will depend on the configuration of your servlet

runner, but in most cases will be:

 http://<server name>/ServerIDS/servlet/ServerIDS

server-config.

properties.rootDirectory

The path to the Deployment Server file system on your

server. Deployment Server retrieves all manifests and

packages from this location. Use the slash character (/) as a

file separator, regardless of your platform.

You will have to set up the file system on your server. For

more information about the file system, see “Using the

Deployment Server File System” on page 15.

microsoft.cabarc.dir The path to the directory that contains the cabarc.exe file.

microsoft.signcode.dir The path to the directory that contains the signcode.exe file.

microsoft.dir The path to the directory that contains your code signing

certificate for Microsoft browsers.

Use this tag if the certificate is saved to your file system. If

the certificate is in the CryptoAPI store, use the

microsoft.common.name tag instead.

microsoft.spc The name of the .spc file for your code signing certificate for

Microsoft browsers.

Use this tag if the certificate is saved to your file system. If

the certificate is in the CryptoAPI store, use the

microsoft.common.name tag instead.

microsoft.pvk The name of the .pvk file for your code signing certificate

for Microsoft browsers.

Use this tag if the certificate is saved to your file system. If

the certificate is in the CryptoAPI store, use the

microsoft.common.name tag instead.

microsoft.common.name The common name of your code signing certificate for

Microsoft browsers.

Use this tag if the certificate is stored in the CryptoAPI store.

Otherwise, use the microsoft.dir, microsoft.spc, and

microsoft.pvk tags.

Configuring Deployment Server 11

Tag Value

java.jarsigner.dir Optional. The path to the directory that contains the

jarsigner.exe file. This is installed with the JDK, and is

normally in the following location:

 c:\j2sdk<version>\bin

If this value is not provided, the Signing Tool tries to locate

the jarsigner.exe file on the current PATH.

java.keystore.file The full path to the file containing a PKCS#12 certificate

(exported from either IE or Mozilla). For example:

 c:\testcert.pfx

java.keystore.password The password for the certificate.

java.cert.name The name of the certificate. This can be determined by

running the keytool program (which is installed with the

JDK). Use the following command to run the tool:

 keytool -list -storetype pkcs12 -keystore

 <path to certificate>

This generates a stream of output. The last two lines will

look something like this:

 <name>, 20-Jul0-2005, keyEntry,

 Certificate fingerprint...

Note that you must copy the complete name, including any

symbols such as parentheses that might appear around it.

info.url A URL. When users are asked whether they want to trust

the applet, they are provided with a link to further

information about the company that signed the applet. This

URL sets the destination of that link.

server-war.jars.include A true or false value, indicating whether you want to use

Log4J to log the Deployment Server server activity. If your

servlet runner has problems with logging, set this value to

false.

Log4J is an open source toolkit for log creation and

management. Log4J is shipped with Deployment Server, and

can be customized to your needs. For more information

about Log4J and customizing Log4J, go to the Apache web

site at:

http://jakarta.apache.org/log4j

server-war.jars.name The path to the Log4J jar file.

This is not necessary if you are not using Log4J (that is, if

server-war.jars.include is false).

server-log4j.properties. name The path to the Log4J properties file.

A default properties file is shipped with Deployment Server,

or you can use your own. If you use your own properties

file, do not include the next four entries in your

configuration file.

server-log4j.properties.

path1.path

The path and filename Deployment Server will use for the

log file.

Do not include this if you are using your own Log4J

properties file.

12

Tag Value

server-log4j.properties.

path2.path

The path and filename Deployment Server will use for the

debug file.

Do not include this if you are using your own Log4J

properties file.

server-log4j.properties.

path1.name

Must be: log4j.appender.A1.file

Do not include this if you are using your own Log4J

properties file.

server-log4j.properties.

path2.name

Must be: log4j.appender.A2.file

Do not include this if you are using your own Log4J

properties file.

timestamp.active A true or false value indicating whether the signature should

be timestamped. Timestamping the signature ensures that

the signature remains valid even if the certificate expires.

timestamp.url The URL of the timestamp server to use when signing the

servlet for Microsoft browsers. For example:

 http://timestamp.verisign.com/scripts/timstamp.dll

Note that you cannot change the timestamp server used

when signing the servlet for Mozilla browsers.

Configuring Applets for Virtual Servers

The Signing Tool embeds the location of the servlet into the applet. This means

that you will need to configure each virtual server separately. Furthermore, if you

want to use the template web site provided, you should make any changes to the

site before using the Signing Tool (for more information, see “About the Template

Web Site” on page 45).

Using the Signing Tool

The Signing Tool is a command line tool that configures the Deployment Server

servlet and applet, and signs the Deployment Server applet so that your users

know you have approved its use.

While the Deployment Server can be installed and configured on any supported

operating system, you should sign the applets on a computer on a Windows®

platform that has Java version 1.4 available. Once signed, you can copy the files to

any of the other platforms supported. This allows you to support users with the

widest range of operating systems. However, if you know that you will not be

using Deployment Server to install software on Microsoft computers, then you can

sign the applet on any computer.

Before running the tool, you must first copy the following files to the same

directory on your computer:

v ServerIDS.war

v IDS.war

v IDS-Signtool.jar

v The modified Signing Tool configuration file.

These files are included in the Deployment Server installation package.

Configuring Deployment Server 13

When run, the Signing Tool creates two WAR files that contain the properly

configured Deployment Server application, two CAB applets for use with Microsoft

browsers, and a JAR applet for use with Mozilla browsers.

Running the Signing Tool

To run the Signing Tool, use the following command:

 java -jar IDS-SignTool.jar <Signing Tool configuration file>

The Signing Tool creates a directory called configured, which contains the following

files:

v ServerIDS.war

v IDS.war

v IDS-IE.cab (applet for Microsoft browsers)

v IDS-NS.jar (applet for Mozilla browsers)

These WAR files and applets are now properly configured and signed, and are

ready for installation.

Installing the WAR files

Once you have configured the WAR files, you can install them in your servlet

runner. The ServerIDS.war contains the servlet, and the IDS.war contains the

template web site and the applets.

If you want to use the template web site, you must install both the ServerIDS.war

and IDS.WAR files in the appropriate directory in your servlet runner.

If you want to use your own web site, you must install the ServerIDS.war and the

individual applet files in the appropriate directory in your servlet runner. For more

information, see “Copying the Applet Files” on page 45.

Refer to the documentation for your servlet runner to determine how to install and

activate the WAR files.

If you want to modify the template web site, see “Modifying the Template Web

Site” on page 48.

14

Using the Deployment Server File System

Deployment Server relies on a file system to organize the manifests and packages

it uses during the deployment process. This file system provides the structure that

Deployment Server uses to determine which applications to check, which manifests

to read, and which packages to deploy.

Before using Deployment Server, you must create a file system and copy a

complete set of manifests and packages to that system.

About the Deployment Server File System

Deployment Server uses a four level file system to store the manifests and

packages required for deploying each application. The file system uses the

following directory structure:

Server
Directory

Application
Directory

Package
Directory

Package
Directory

IDS Root
Directory

Each level in the file system serves a specific purpose and contains specific

information:

v Root Directory — The root directory is where the Deployment Server servlet

looks to find all of the manifests and application packages it will use during

deployment. The root directory contains one or more server directories.

v Server Directories — Each server directory corresponds to a virtual server

running Deployment Server, and contains the master manifest for that server.

Each server directory also contains one or more application directories.

v Application Directories — Each application directory corresponds to a single

application you are deploying, and contains an application manifest. Each

application directory also contains one or more package directories.

v Package Directories — Each package directory corresponds to a single package

you are deploying, and contains a package and a package manifest.

For detailed instructions on setting up the file system, see ″Setting Up the File

System″.

© Copyright IBM Corp. 2003, 2006 15

How Deployment Server Uses the File System

Deployment Server uses the file system to organize the applications and packages

that will be installed by each server. When a user logs on to a server, Deployment

Server processes all of the applications and packages in the corresponding server

directory in the following manner:

1. Deployment Server reads the master manifest, which contains a list of

applications to process.

2. Deployment Server checks the file structure for applications that are not in the

list. If it locates additional applications, it adds them to the list in an

undetermined order.

3. Deployment Server checks each application manifest for a list of packages to

process.

4. Deployment Server checks the file structure for packages that are not in the list.

If it locates additional packages, it adds them to the list in an undetermined

order.

5. Deployment Server processes each application manifest in the order listed, and

determines whether to process the packages for each application.

6. Deployment Server processes each package manifest in the order listed, and

determines whether to install the packages.

7. Deployment Server installs all of the necessary packages.

In this way, Deployment Server uses the file system to create the final list of

application and package manifests to be processed. However, you may want to list

all of the applications and packages in the manifests, since this allows you to

specify the order in which they are processed.

Note: Deployment Server will process the manifests for all applications and

packages in the server directory. If you do not want an application installed,

you will either have to change the period during which the application is

active (using the Active tag in the manifest) or remove the application from

the server directory.

Setting Up the File System

Before using Deployment Server, you must set up the correct file system on your

server, and make sure you have copied the necessary manifests and packages to

the file system.

To set up the file system, you will have to create a directory structure that contains

the following levels:

v Deployment Server Root Directory

v Server Directories

v Application Directories

v Package Directories

Deployment Server Root Directory

You can create the Deployment Server root directory anywhere on your server, and

give it any name. The location of this directory is coded into the Deployment

Server servlet during configuration.

The Deployment Server root directory contains one or more server directories.

16

Server Directories

Each installation of Deployment Server should include a server directory named

default. The default server directory is used as the general case, and is accessed

whenever a specific server directory cannot be located.

You can also create any number of specific server directories. These are useful if

you need different servers to install different applications. Each directory name

must follow these conventions:

v The directory name must match the server URL used when configuring the

applet (that is, the value of the applet-install_config.properties.server_url tag). For

example, www.IBM.com.

v Replace all periods in the domain name with underscore symbols. For example,

″www.IBM.com″ becomes ″www_IBM_com″.

v Append the correct port number to the domain name, preceded by an

underscore. For example, ″www_IBM_com_80″.

Each server directory may also contain the master manifest for that server, and

contains one or more application directories.

For more information about creating a master manifest, see ″Using Date Ranges in

Manifests″ .

Application Directories

Each application directory represents a single application that may be deployed to

the user. The directories can have any name, but you must restrict directory names

to alpha-numeric characters (that is, do not use punctuation such as periods or

semi-colons).

Each application directory contains the application manifest for that application, as

well as one or more package directories.

For more information about creating application manifests, see ″Creating an

Application Manifest″.

Package Directories

Each package directory represents a single package that may be deployed to the

user. The directories can have any name, but directory names should be restricted

to alpha-numeric characters (that is, do not use punctuation such as periods or

semi-colons).

Each package directory contains a package manifest and the corresponding

package.

For more information about:

1. Creating package manifests, see ″Creating a Package Manifest″.

2. Packages, see ″Using Packages″.

Using the Deployment Server File System 17

18

Using Packages

Deployment Server deploys software in the form of packages. Each package is zip

file that contains:

v The files necessary to install an application or a portion of an application.

v An installation program that will install the files.

In general, Deployment Server will deploy an application as a number of packages.

Deployment Server can make decisions about whether to install individual

packages, even if those packages are all part of the same application. This allows

greater flexibility in determining which components are installed for each user.

For example, you might divide a spell checker into a number of packages: one for

the core spell checking engine, and one for each dictionary. When deploying the

spell checker, you might set the core engine to be mandatory, but each dictionary

to be optional, allowing the user to choose which languages to install.

You can use packages provided by IBM, or you can create your own packages.

Using Packages Provided by IBM

IBM provides complete sets of packages and manifests to deploy products such as

IBM Workplace Forms Viewer. Each product or application is delivered as a single

zip file which contains:

v All of the manifests required to deploy the application (text files).

v All of the packages required to deploy the application (zip files).

To setup Deployment Server to deploy an application provided by IBM:

1. Copy the application zip file to the appropriate server directory in your

Deployment Server file system.

2. Unzip the application file.

v The application and package sub-directories are created in your file system,

and the package and manifest files are automatically copied to the

appropriate directories.

Deployment Server will now deploy the application to any user logging on to that

server.

For more information about the Deployment Server file system, see ″Using the

Deployment Server File System″.

Creating Your Own Packages

If you want to deploy your own software through Deployment Server, you must

create your own packages. Each package should contain either a complete

application, or a discrete component of an application. For example, you might

split a spell checker into one package for the core spell-checking engine and one

package for each dictionary file. This would allow you or your users to make

decisions about which dictionaries to install.

© Copyright IBM Corp. 2003, 2006 19

Once you have determined how to split your application into packages, follow

these steps to create each package:

1. Assemble the files you need to install the component.

2. Create an installation package using your preferred software (such as

InstallShield).

3. Ensure the installation program is named either setup.exe or install.exe.

4. Zip the install program and any required files.

The zip file is your Deployment Server package. You can now copy the zip file to

the Deployment Server file system.

Copying Packages to the Deployment Server File System

Once you have created your packages, you can simply copy them to the

appropriate package directories in your Deployment Server file system. Remember

that you must also create a package manifest to match each package.

For more information about the Deployment Server file system, see “Using the

Deployment Server File System” on page 15.

For more information about creating manifests, see “Using Manifests” on page 21.

20

Using Manifests

Manifests provide the instructions that the applet follows when updating the user’s

computer. These instructions provide the information the applet needs to decide

which applications and packages should be updated, and in what order.

Before you create your manifests, you should take some time to understand the

manifest hierarchy and how Deployment Server uses manifests to make decisions.

About the Manifest Hierarchy

Manifests rely on a three level hierarchy that includes a single master manifest, one

or more application manifests, and one or more package manifests, as shown:

Master
Manifest

Application
Manifest

Package
Manifest

Application
Manifest

Package
Manifest

The master manifest controls the order in which the applications are installed, as

well as the text that appears in the title bar of the Deployment Server installation

window.

The application manifests determine whether an application should be on the

user’s computer and outline the rules for detecting existing applications. For

example, you might need to determine whether a newer version of the application

is installed.

The package manifests determine whether each package will be installed, and

control the detection of existing packages in the same way application manifests

can detect existing applications.

How Manifests Make Decisions

Both application and package manifests allow you to detect software components

on the user’s computer and make decisions based on that knowledge.

For example, you might want to upgrade your users to a new version of ACME

WebProgram. If they have an old version installed, you’ll want to install the new

version in the same location. If they don’t have the WebProgram installed, you’ll

want to install the WebProgram in a default location.

© Copyright IBM Corp. 2003, 2006 21

Using the decision structure in manifests allows you to perform different actions

like these, based on the user’s configuration. Both application and package

manifests offer the same logical structure, as shown:

Locate Path
to

Component

Get Version
Of Particular

File

Compare
Versions

and
Decide

Whether to
Install

Path Not
Found

Path
Found

Set Default
Path and

Install

Version
Retrieved

Version Not
Retrieved

Use Located
Path and

Install

First, the Deployment Server attempts to locate the path to a particular component.

This is generally retrieved from a registry key.

If the path is found, Deployment Server looks for a specific file in that directory.

The name of this file is defined in the manifest.

If the file is found, Deployment Server gets the version number of that file.

Deployment Server then compares the version of the component it is deploying to

the version of the located file, and determines whether an update is required. If the

installed component is out of date, Deployment Server will install the updated

component in the located directory.

If Deployment Server is unable to locate a path, Deployment Server sets a default

path and installs the component.

If Deployment Server is unable to retrieve a version number, Deployment Server

will install the component in the located directory.

This flow is controlled by the DetermineUpdate function, which is defined in each

application and package manifest.

Creating Manifests

Each manifest is a plain text file containing a series of tag value pairs. Using these

tag value pairs, you can define specific values, such as the installation path, or you

can create expressions that Deployment Server will evaluate at run time. For

example, you might want Deployment Server to detect whether an application is

already installed on the user’s computer.

All manifests, regardless of type, are saved with the filename manifest.properties,

and are distinguished from each other by their location in the file system. Each

type of manifest has a default set of tag value pairs, some of which are mandatory.

Furthermore, manifests may also contain a number of tag value pairs that

represent the decisions being made, as well as locale information.

22

This section describes the default tag values pairs for each type of manifest, and

explains how to create expressions that will make decisions.

Using Date Ranges in Manifests

A number of the tags in manifests require a date range as the value. This range

must be expressed as <start date> - <end date>, and each must be a valid date in

the Gregorian calendar. Other calendar formats, such as Chinese or Hebrew, are

not supported by the Deployment Server.

Furthermore, the date must be in the following format:

 YYYY/MM/DD HH:MM:SS

For example:

 2002/01/01 00:00:00 - 2002/12/31 23:59:59

would represent the period of 12 am, Jan. 1, 2002 to 12 pm, Dec. 31, 2002.

You can also replace the dates with the key words start and end as follows:

v If you replace the start date with the word start, the range will include all time

before the end date.

v If you replace the end date with the word end, the range will include all time

after the start date.

v If the value is start - end, the range includes all time (that is, from the beginning

of time to the end of time).

Creating a Master Manifest

The master manifest sets the order in which applications are installed and the title

that appears in the status window while the Deployment Server applet is running.

A master manifest contains the following tag value pairs:

 Tag Value

Version

(mandatory)

This is the version of the manifest scripting language used to

write the manifest. The current version is 1.0.

NameList

(optional)

A comma separated list of applications. In this list, the name

of any application must be the same as the folder name for

that application in the Deployment Server file system.

The applications will be installed in the order listed. Any

applications in the file system that are not included in the list

will be installed after the listed applications, in an

undetermined order.

If no NameList is available, all applications in the file system

will be installed in an undetermined order.

Title

(optional)

A string that is displayed at the top of the status window

while the applet is running. Your users will see this status

window while the applet is updating their computer.

The default value is ″IBM Workplace Forms Server -

Deployment Server″.

Using Manifests 23

For example, a master manifest might look like this:

 Version = 2.0

 NameList = Acme_WebProgram, Acme_DesktopProgram

 Title = Acme Staff Deployment

If no master manifest is available, the applications will be installed in an

undetermined order, and the applet will use the default title of IBM Workplace

Forms Server - Deployment Server.

Creating an Application Manifest

The application manifest determines whether Deployment Server should process

the package manifests for that application. In making this decision, it follows these

rules:

v If the existing application is either a lower version or the same version, then the

package manifests should be processed. This ensures that minor updates to

specific packages are deployed, even if the overall application version has not

changed.

v If the existing application is a higher version, then the packages manifests

should not be processed.

For example, if the user has version 2.0 of an application, and Deployment Server

is deploying version 3.0, then the 3.0 packages should be processed. Likewise, if

the user already has version 3.0, the 3.0 packages should still be processed in case

some of them contain minor updates.

The application manifest also determines the order in which packages are installed.

This may be important if some packages, such as core components, must be

installed before other packages.

An application manifest contains the following tag value pairs:

 Tag Value

Version

(mandatory)

This is the version of the scripting language used to write

the manifest. The current version is 1.0.

ApplicationName

(mandatory)

This is the name of the application that Deployment Server

will display to the user in the installation dialog. This string

can include spaces and punctuation, and can be of any

length. However, keep in mind that if application names

are too long, the user will have to use a horizontal scroll

bar to read them.

ApplicationVersion

(mandatory)

This is the version number of the application Deployment

Server is deploying. You must use a four digit version

number. For example, 4.0.1.2.

NameList

(optional)

A comma separated list of packages. In this list, the name

of any package must be the same as the folder name for

that package in the Deployment Server file system.

The packages will be deployed in the order listed. Any

packages in the file system that are not included in the list

will be deployed after the listed packages, in an

undetermined order.

If no NameList is available, all packages in the file system

will be deployed in an undetermined order.

24

Tag Value

Active

(optional)

This is a date range that defines the period of time during

which Deployment Server will deploy this application.

Deployment Server will deploy the application to any user

who connects during this time.

The default value is start - end.

InstallMode

(optional)

This tag defines the manner in which Deployment Server

will install the application, as well as the time period

during which that mode will apply. For example, you might

want an application to be optional for the first three weeks,

and then required after that (allowing your users some time

to upgrade).

There are 3 modes available:

v Optional — Deployment Server will install the

application by default. The application is listed in the

installation dialog, and the user may choose not to install

it.

v Required — Deployment Server will install the

application by default. The application is listed in the

installation dialog, but the user may not refuse it. If the

installation occurs outside of the specified date range, the

application is treated as optional.

v Silent — Deployment Server will install the application

by default. The application is not listed in the installation

dialog, and the user may not refuse it. If the installation

occurs outside of the specified date range, the application

is treated as optional.

Note that regardless of the install mode, users will be able

to cancel any installation by clicking the Cancel button in

the installation window. If all applications and packages are

silent, Deployment Server will not display the installation

dialog that lists the applications and packages. However,

the user can still cancel the installation from the progress

dialog box, which is always shown.

If you define multiple install modes with an overlapping

date range, the order of precedence is:

v Optional overrules both required and silent.

v Required overrules silent.

The InstallMode tag is written as InstallMode.<mode>. For

example, InstallMode.optional. The value assigned to the tag

is the date range during which that mode is valid. For

example:

 InstallMode.optional = 2002/01/01 00:00:01 - end

If you do not set an install mode for an application, the

install mode is determined as follows:

v If all of the packages have the same install mode, the

application inherits that mode.

v If the packages have mixed install modes, but at least

one is silent or required, the application is required.

v If the packages do not have an install mode, the

application is optional.

Using Manifests 25

Tag Value

Command

(mandatory)

The name of the expression that will decide whether to

update the application. You can use any name. For

example:

 Command = MakeDecision

You will also have to define the expression in the

configuration file. For more information, see “Adding

Expressions to a Manifest” on page 30.

For example, an application manifest might look like this:

 Version = 1.0

 ApplicationName = Acme_WebProgram

 ApplicationVersion = 3.0.0

 NameList = CoreComponents, Spellchecker, LocaleComponents

 Active = start - end

 InstallMode.required = start - end

 Command = MakeDecision

 <MakeDecision expression>

For more information about defining the expression, see “Adding Expressions to a

Manifest” on page 30.

Localizing the Text Displayed by the Applet

Users can select which language the install pages and applet use by selecting the

language they want from the Language list in the upper right-hand corner of the

install page. However, to ensure that the install applet displays the correct

localization properties, you must localize your manifest tags.

To localize your manifest tags:

1. Append the end the manifest tag with the language code for the locale you

want to use. For example:

 ApplicationName.fr

2. Create a new manifest tag for each language you want to support. For example:

 ApplicationName.fr

 ApplicationName.de

 ApplicationName.ko

Note: Only theApplicationName tag and Commands that use the Path Function can

be localized.

Creating a Package Manifest

The package manifest determines whether a package will be installed. For

example, if you were deploying version 5.0.1 of a particular component, and the

user had version 5.0.0, you would want to install the new component.

If Deployment Server determines that a package should be installed, it will copy

that package to the user’s computer and run the package’s installation program. If

Deployment Server determines that a package should not be installed, it will move

on to the next package.

26

A package manifest contains the following tag value pairs:

 Tag Value

Version

(mandatory)

This is the version of the scripting language used to write

the manifest. The current version is 1.0.

PackageName

(mandatory)

This is the name of the package that Deployment Server

will display to the user in the installation dialog. This

string can include spaces and punctuation, and can be of

any length. However, keep in mind that if the package

names are too long, the user will have to use a horizontal

scroll bar to read them.

PackageVersion

(mandatory)

This is the version number of the package Deployment

Server is deploying. You must use a four digit version

number. For example, 4.0.1.2.

Active

(optional)

This is a date range that defines the period of time

during which Deployment Server will deploy this

package. Deployment Server will deploy the package to

any user who connect during this time.

The default value is start - end.

Using Manifests 27

Tag Value

InstallMode

(optional)

This tag defines the manner in which Deployment Server

will install the package, as well as the time period during

which that mode will apply. For example, you might

want a package to be optional for the first three weeks,

and then required after that (allowing your users some

time to upgrade).

There are 3 modes available:

v Optional — Deployment Server will install the

package by default. The package is listed in the

installation dialog, and the user may choose not to

install it.

v Required — Deployment Server will install the

package by default. The package is listed in the

installation dialog, but the user may not refuse it. If the

installation occurs outside of the specified date range,

the package is treated as optional.

v Silent — Deployment Server will install the package

by default. The package is not listed in the installation

dialog, and the user may not refuse it. If the

installation occurs outside of the specified date range,

the package is treated as optional.

Note that regardless of the install mode, users will be

able to cancel any installation by clicking the Cancel

button in the installation window. If all applications and

packages are silent, Deployment Server will not display

the installation dialog that lists the applications and

packages. However, the user can still cancel the

installation from the progress dialog box, which is always

shown.

If you define multiple install modes with an overlapping

date range, the order of precedence is:

v Optional overrules both required and silent.

v Required overrules silent.

The InstallMode tag is written as InstallMode.<mode>. For

example, InstallMode.optional. The value assigned to the

tag is the date range during which that mode is valid.

For example:

 InstallMode.optional = 2002/01/01 00:00:01 - end

Note that packages can have a different install mode than

the applications they belong to, and the application’s

install mode may affect the package. For example, if the

application is silent, the application will not be listed in

the installation dialog box, and the user will not be able

to deselect optional packages.

If a package’s install mode is not set, it will inherit the

install mode of the application it belongs to. If the

application also does not have an install mode set, the

application’s install mode will be set by the default rules,

then the package will inherit the application’s install

mode.

28

Tag Value

Command

(mandatory)

The name of the expression that will decide whether to

install the package. You can use any name. For example:

 Command = MakeDecision

You will also have to define the expression in the

configuration file. For more information, see “Adding

Expressions to a Manifest” on page 30.

Install.list

(required)

The filename of the package that Deployment Server will

download to the user’s computer. For example:

 Install.list = spellchecker.zip

The package is retrieved from the appropriate package

directory in the file system, which also contains the

package manifest.

Install.command

(optional)

A string containing the command line parameters that

Deployment Server will use when running the installer

contained in the package. This is useful if you want to

use specific installation features for a particular package.

For example:

 Install.command = -silent

For example, a package manifest might look like this:

 Version = 1.0

 PackageName = CoreComponents

 PackageVersion = 3.0.0

 Active = start - end

 InstallMode.required = start - end

 Command = MakeDecision

 <MakeDecision expression>

 Install.list = coreComponents.zip

 Install.command = -silent

For more information about defining the expression, see “Adding Expressions to a

Manifest” on page 30.

Localizing the Text Displayed by the Applet

Users can select which language the install pages and applet use by selecting the

language they want from the Language list in the upper right-hand corner of the

install page. However, to ensure that the install applet displays the correct

localization properties, you must localize your PackageName tags.

To localize your PackageName tags:

1. Append the end of each PackageName tag with the language code for the

locale you want to use. For example:

 PackageName.fr

2. Create a new manifest tag for each language you want to support. For example:

 PackageName.fr

 PackageName.de

 PackageName.ko

Note: Only theApplicationName tag and Commands that use the Path Function can

be localized.

Using Manifests 29

About Functions

You use functions to make decisions in a manifest. In other words, the functions

provide the logic that Deployment Server uses to determine whether to update the

software on the user’s computer.

Manifest functions are just like function calls in programming. You call a particular

function, and pass it some values. The function then does some work, and returns

a value. However, unlike programming, you must call each function using a series

of tag-value pairs.

For example, in Java, you might define the following function:

 Vector DetermineWhetherToUpdate(Vector parameter1, Vector parameter2)

This function takes two parameters, both arrays of strings, and returns an array of

strings. The function itself would decide whether the software on the user’s

computer should be updated. The return value might be true or false, depending on

the decision the function makes.

To call the function, you would use the following expression:

 return = DetermineWhetherToUpdate(stringList1, stringList2);

Manifests recreate this same function call as a set of tag-value pairs. The first

tag-value pair defines which function you are calling, while the following tag-value

pairs define the values you are passing to the function.

For example, you would call the same DetermineWhetherToUpdate function using the

following expression:

 return = DetermineWhetherToUpdate

 parameter1 = string1

 parameter2 = string2

The full syntax of the tag-values pairs is actually somewhat more complex (and is

more fully described in the next section), but the basic structure directly parallels a

function call in C.

The available functions are outlined in ″Function Details″.

Adding Expressions to a Manifest

Each manifest includes a Command tag. The value of this tag is the name of the

first expression you want to evaluate. For example:

 Command = <expression name>

You can choose any name for an expression, just as you can choose any name for a

variable in programming. Expressive names are best, as they make your manifests

easier to understand. For example, to call a function that would decide whether to

install an application, you might use the following name:

 Command = MakeDecision

Next, you must define the expression. Each expression is written as a series of tag

value pairs. When you create an expression, you must indicate what function the

expression should call and list the parameters for the function.

For example, a typical expression is written as follows:

30

<expression name> = <function name>

 <parameter1> = <value>

 <parameter2> = <value>

The expression name must always be followed by a ″.function″ extension. This

identifies the first tag the beginning of the expression. For example:

 MakeDecision.function = <function name>

The function name is the name of the function you want to call. For example:

 MakeDecision.function = DetermineUpdate

The number of parameters depends on the function you are using. Each parameter

begins with the name of the expression, and is followed by the parameter name

and the parameter type. For example:

 MakeDecision.<parameter name>.<parameter type> = <value>

The parameter names are defined by the function you are using. For example, the

DetermineUpdate function has four parameters: dir, file, defaultDir, and version. The

first parameter is written as follows:

 MakeDecision.dir.<parameter type> = <value>

The parameter type is similar to a data type in programming, and sets the data

type for the parameter. Each parameter can contain an array of that data type. For

example, if you used the literal type, the parameter could contain and array of

literal strings, as shown:

 MakeDecision.defaultDir.literal = <value>

For more information about:

1. Parameter types, see ″Parameter Types″.

2. Functions available, see ″Function Details″.

Using Nested Expressions

You can call one expression from another, much like you call subroutines in

programming. This allows you to calculate the value of any parameter using

another expression. This is useful for creating sophisticated manifests that perform

more calculations than the DetermineUpdate function can do alone.

To call another expression, you first set the parameter to an expression type by

setting the parameter type to expr:

 MakeDecision.defaultDir.expr = <value>

You then set the parameter’s value to the name of the expression you want to call:

 MakeDecision.defaultDir.expr = SetDefaultDir

Finally, you define the new expression later in the manifest. For example, in the

following code the MakeDecision expression calls the GetDefaultDir expression:

 MakeDecision.function = DetermineUpdate

 MakeDecision.defaultDir.expr = GetDefaultDir

 <additional parameters>

 GetDefaultDir.function = Get

 <parameters>

When you call a second expression, the second expression will run, calculate a

value, and return that value to the parameter that called it. For example, the

GetDefaultDir expression might produce a value of c:/Program Files/IBM/. This

Using Manifests 31

value is then assigned to the defaultDir parameter, and the parameter’s data type is

automatically adjusted to match the data, as though the line read:

 MakeDecision.defaultDir.path = c:/Program Files/IBM/

Parameter Types

Parameter types are similar to data types in programming. They determine which

type of data a parameter contains.

Each parameter can contain an array of that data type. For example, if you set a

parameter to be of the path type, the parameter could contain an array of paths.

Deployment Server supports the following parameter types:

alias The parameter’s value is an alias (similar to a variable). You can use any

name to represent an alias. Use aliases to store the results of an expression

so you can refer to the result later. For example:

GetApplicationVersion.result.alias = ApplicationVersion

 For more information about aliases, see ″Using Aliases in Manifests″ .

expr The parameter is calling another expression. That expression is evaluated,

and the result is then assigned to the parameter.

 For more information, see ″Using Nested Expressions″ .

htmlParam

The parameter’s value is a list of HTML parameters. These HTML

parameters are automatically retrieved from the <param> tag of the

<applet> tag that loaded the active applet.

 For more information about the applet tag, see ″Adding the Applet Tag″ .

literal The parameter’s value is a literal string.

path The parameter’s value is the path to a file on the user’s computer. The

following rules apply to writing a path:

v Use the slash character (/) as a file separator. For example, c:/Program

Files/ACME/WebProgram/3.0/.

v Enclose aliases with the greater than and less than symbols. For

example, <alias>.

v Use an asterisk (*) to denote a wildcard of any length. For example,

c:/Program Files/ACME/WebProgram/*/.

– Note that the asterisk only applies to one directory level. For

example, c:/* does not represent the entire directory structure - it only

represents the root directory.
v Use a question mark (?) to denote a single character wildcard. For

example, c:/Program Files/ACME/WebProgram/3.?/.

v If the file or directory names in the path contain any reserved characters

(/ \ * ? < >), escape the character with a backward slash (\). For

example, c:/Program Files/ACME/WebProgram/3.0/WhatsThis\?/.

registry

The parameter’s value is a registry key. The following rules apply to

writing a registry key:

v Use the slash character (/) as a key separator. For example,

HKEY_LOCAL_MACHINE/SOFTWARE/.

32

v Enclose aliases with the greater than and less than symbols. For

example, HKEY_LOCAL_MACHINE/SOFTWARE/<WebProgramKey>/.

v Use an asterisk (*) to denote a wildcard of any length. For example,

HKEY_LOCAL_MACHINE/SOFTWARE/*/.

– Note that the asterisk only applies to one key level.
v Use a question mark (?) to denote a single character wildcard. For

example, HKEY_LOCAL_MACHINE/SOFTWARE/WebProgram 5.?/.

v Enclose registry values within brackets ([]). For example,

HKEY_LOCAL_MACHINE/SOFTWARE/Microsoft/Current

Version/AppPaths/masqform.exe/[Path].

v To access the default value for a registry key, use [Default]. For example,

HKEY_LOCAL_MACHINE/SOFTWARE/Microsoft/Current

Version/AppPaths/run.exe/[Default].

Using Aliases in Manifests

Aliases are similar to variables in programming. They allow you to refer to specific

information by a particular name. For example, if you determined the path to a

particular file, you might want to store that information in an alias called FilePath.

You could then use the name FilePath to refer to that information, just as you

would use a variable name to refer to the value of a variable.

Aliases are created by assigning them to a parameter in a function. For example, if

you used a FindLocation function to search for the location of a file, the result

parameter would hold the name of the directory that contained that file. If you

assign the result parameter to equal an alias name, then the result will be stored in

that alias.

To do this, first you must set the parameter to be an alias type. For example:

 MyFunction.result.alias = <value>

Next, you place an alias name in the value portion of the parameter. For example,

to use an alias called InstallApplicationDirectory, you would write:

 MyFunction.result.alias = InstallApplicationDirectory

When the function runs, the result of the function is stored in the alias

InstallApplicationDirectory. You can then refer to that alias elsewhere in your

manifest. When you do this, you must enclose the alias in the greater than and less

than symbols (< >). This indicates that the manifest should use the value of the

alias. For example, the following line uses the FileVersion alias we created earlier:

 MyOtherFunction.argument1.literal = <InstallApplicationDirectory>

When Deployment Server processes this line, it will substitute the value of the

alias. For example, if the directory that the application was installed into was

called WebProgram 2.0.0, Deployment Server would substitute that value, as

though the line read:

 MyOtherFunction.argument1.literal = WebProgram 2.0.0

Predefined Aliases

Deployment Server uses a number of predefined aliases to control some behavior.

These aliases are set at both the application and package level, as follows:

Using Manifests 33

Predefined Application Aliases:

v InstallApplication — This alias determines whether the application should exist

on the user’s computer. If true, Deployment Server will process all of the

package manifests belonging to that application. If false, Deployment Server will

not check the packages, and will skip to the next application. This alias is

automatically set by the DetermineUpdate function when it compares version

numbers.

v InstallApplicationDirectory — This alias contains the path to the application.

This is either the path in which the application is already installed, or the path

to which the application should be installed. This alias is automatically set by

the DetermineUpdate function, and is either the detected path (the dir parameter)

or the default path (the defaultDir parameter).

v InstalledApplicationVersion — This alias contains the version number of the

installed application. If no application is detected, this alias will be empty. This

alias is automatically set by the DetermineUpdate function when it detects the

version of the specified file (the file parameter).

Predefined Package Aliases:

v InstallPackage — This alias determines whether the package will be installed. If

true, Deployment Server will install the package. If false, Deployment Server will

not install the package. This alias is automatically set by the DetermineUpdate

function when it compares version numbers.

v InstallPackageDirectory — This alias contains the path to the package. This is

either the path in which the package is already installed, or the path to which

the package should be installed. This alias is automatically set by the

DetermineUpdate function, and is either the detected path (the dir parameter) or

the default path (the defaultDir parameter).

v InstalledPackageVersion — This alias contains the version number of the

installed package. If no package is detected, this alias will be empty. This alias is

automatically set by the DetermineUpdate function when it detects the version of

the specified file (the file parameter).

As indicated, these aliases are automatically set by the DetermineUpdate function.

For the most part, these aliases are used internally by Deployment Server to

control different aspects of the deployment process. However, the application

aliases can also be useful when writing package manifests.

For example, if you have already detected the location of an application, and you

know your package should be in the same directory, you might want to refer to

the InstallApplicationDirectory alias in your package manifest. This saves you from

having to read the correct path from the registry again.

For more information about the DetermineUpdate expression, see

″DetermineUpdate″.

Note: Application aliases will work both within an application manifest and

within any of the package manifests for the same application. For example,

you can refer to the InstallApplicationDirectory alias within a package

manifest, and it will contain the same value as it did in the application

manifest. In programming terms, application aliases are in scope in package

manifests for that application.

34

Function Details

Deployment Server supports a number of functions that you can use to create

expressions in your manifests. Each function is explained in detail in this section.

About the Result Parameter

In addition to the parameters listed for each function, all functions contain an

optional result parameter. This parameter contains the return value of the function.

For example, if you called a GetFileVersion function, this function would retrieve

the version number of a particular file. The result parameter of the function would

then store this value. This is useful if you want to assign the result of a function to

an alias.

For more information about aliases, see “Using Aliases in Manifests” on page 33.

Function Descriptions

AndOperation

Use the AndOperation to determine whether a number of expressions are true and

to combine the results of those expressions.

When called, the AndOperation calls any number of additional expressions. Each

expression is evaluated in turn. If any expression returns empty or false result, the

AndOperation ends (that is, no more expressions are called) and returns an empty

result.

If none of the expressions returns an empty or false value, the AndOperation returns

all of the results as an array. For example, if the first expression returns c:/ and the

second expression returns Program Files/IBM, then the AndOperation will return an

array containing c:/, Program Files/IBM.

Note that the AndOperation may return multiple true values. For example, if the

AndOperation called three expressions, and each expression returned true, the

AndOperation would return an array containing true, true, true. The expression

calling the AndOperation will interpret this as true.

This function uses the following parameters:

v list - A comma delimited list of expressions to evaluate. Note that this is a literal

type.

For example, in the following manifest an AndOperation is used to call two

CheckIfFileExists functions. If both files exist, the AndOperation will return true. If

either file does not exist, the AndOperation will return an empty result.

 CheckForFiles.function = AndOperation

 CheckForFiles.list.literal = CheckForWebProgram, CheckForDesktopProgram

 CheckForWebProgram.function = CheckIfFileExists

 CheckForWebProgram.file.path = c:/Program Files/ACME/WebProgram/3.0/run.exe

 CheckForDesktopProgram.function = CheckIfFileExists

 CheckForDesktopProgram.file.path = c:/Program Files/ACME/DesktopProgram/

 3.0/run.exe

Using Manifests 35

CompareVersion

Use CompareVersion to compare two version numbers with the operator of your

choice. CompareVersion returns true if the comparison is true, and false if the

comparison is false.

For example, if you tested whether 4.5.0.0 > 4.4.0.0 the result would be true.

This function uses the following parameters:

v arg1 — The first version number. This must be a four part version, such as

4.5.0.0.

v arg2 — The second version number. This must be a four part version, such as

4.5.0.0.

v operation — The operation to use for the comparison. Valid operators are: <, <=,

=, =>, >, and !=.

For example, in the following manifest a CompareVersion function is used to

determine whether the installed software is older than the current version. The

CompareVersion function calls a GetFileVersion function to retrieve the version of the

installed software, then compares this to the current version of 5.0.0.0.

 IsInstallOlder.function = CompareVersion

 IsInstallOlder.arg1.literal = 5.0.0.0

 IsInstallOlder.operation.literal = >

 IsInstallOlder.arg2.expr = GetInstalledVersion

 GetInstalledVersion.function = GetFileVersion

 GetInstalledVersion.file.path = c:/Program Files/ACME/WebProgram/3.0/run.exe

CheckIfFileExists

Use CheckIfFileExists to determine whether a file exists on the client computer.

When called, CheckIfFileExists will check the client computer for a specified file. If

the file exists, the CheckIfFileExists will return true. If the file does not exist,

CheckIfFileExists will return false.

This function uses the following parameters:

v file — The path and filename to check.

For example, in the following manifest an AndOperation is used to call two

CheckIfFileExists functions. If both files exist, the AndOperation will return true. If

either file does not exist, the AndOperation will return an empty result.

 CheckForFiles.function = AndOperation

 CheckForFiles.list.literal = CheckForWebProgram, CheckForDesktopProgram

 CheckForWebProgram.function = CheckIfFileExists

 CheckForWebProgram.file.path = c:/Program Files/ACME/WebProgram/3.0/run.exe

 CheckForDesktopProgram.function = CheckIfFileExists

 CheckForDesktopProgram.file.path = c:/Program Files/ACME/DesktopProgram/

 3.0/run.exe

CheckIfRegistryExists

Use CheckIfRegistryExists to determine whether a registry key exists on the client

computer.

When called, CheckIfRegistryExists will check the client computer for a specified

registry key. If the registry key exists, CheckIfRegistryExists will return true. If the

registry key does not exist, CheckIfRegistryExists will return false.

36

This function uses the following parameters:

v key — The registry key to check.

For example, in the following manifest an AndOperation is used to call two

CheckIfRegistryExists functions. If the registry keys exist, the CheckIfRegistryExists

functions will both return true, and the AndOperation will return true. If either

registry entry does not exist, the AndOperation will return an empty result.

 CheckForFiles.function = AndOperation

 CheckForFiles.list.literal = CheckForWebProgram, CheckForDesktopProgram

 CheckForWebProgram.function = CheckIfRegistryExists

 CheckForWebProgram.key.registry = HKEY_LOCAL_MACHINE/SOFTWARE/ACME/WebProgram/

 3.0.0/

 CheckForDesktopProgram.function = CheckIfRegistryExists

 CheckForDesktopProgram.key.registry = HKEY_LOCAL_MACHINE/SOFTWARE/ACME/

 DesktopProgram/3.0.0/

=======

 CheckForFiles.list.literal = CheckForWebProgram2, CheckForWebProgram1

 CheckForWebProgram2.function = CheckIfRegistryExists

 CheckForWebProgram2.key.registry = HKEY_LOCAL_MACHINE/SOFTWARE/ACME/WebProgram/

 2.0.0/

 CheckForWebProgram1.function = CheckIfRegistryExists

 CheckForWebProgram1.key.registry = HKEY_LOCAL_MACHINE/SOFTWARE/ACME/WebProgram/

 1.0.0/

>>>>>>> 1.4

DetermineUpdate

The DetermineUpdate function provides the logic that determines which packages

Deployment Server will install. At the application level, DetermineUpdate decides

whether to process the package manifests for that application. At the package level,

DetermineUpdate decides whether to install each package.

DetermineUpdate attempts to locate a particular file on the user’s computer, and to

retrieve the version number of that file. The file’s version number is then

compared to the version number of the application or package being deployed,

and a decision is made as follows:

v Application — If the version of the deployed application is greater than or equal

to the version of the installed component, then DetermineUpdate returns true and

the package manifests for that application will be processed.

v Package — If the version of the deployed package is greater than the version of

the installed component, then DetermineUpdate returns true and the package will

be installed.

If Deployment Server cannot find the specified path or file, then DetermineUpdate

will return true, and either the package manifests will be processed or the package

will be installed.

For example, suppose Deployment Server is deploying ACME WebProgram.

Deployment Server would first check the user’s registry to locate the path to the

installed version of the WebProgram. Deployment Server would then retrieve the

version number of the run.exe file in that directory. If the installed version was less

than or equal to the version Deployment Server is deploying, then Deployment

Server would proceed to the package level and check each package in turn. Any

out of date or missing packages would then be installed.

This function uses the following parameters:

v dir — This is the directory in which the component is installed.

Using Manifests 37

v file — This is the name of the file whose version will be retrieved.

v defaultDir — This is the directory to which the application will be installed if a

previously installed path or file cannot be located.

v version — This is the four part version number of the application Deployment

Server is deploying. For example, 5.0.0.0. If this parameter is not included, the

version is taken from the ApplicationVersion or PackageVersion entry in the

manifest.

Note: If you are deploying a file that does not have a version number, such as a

text file, use a version number of 0.0.0.0. In this case, Deployment Server

will detect whether the file already exists on the user’s computer, and will

install the file if it does not exist.

For example, to determine whether to install WebProgram 3.0, you would use the

following expression:

 MakeDecision.function = DetermineUpdate

 MakeDecision.dir.registry = HKEY_LOCAL_MACHINE/SOFTWARE/Microsoft/CurrentVersion/

 App Paths/run.exe/[Default]

 MakeDecision.defaultDir.literal = c:/Program Files/ACME/WebProgram/3.0

 MakeDecision.file.literal = run.exe

 MakeDecision.version.literal = 3.0.0.0

Get

Use Get to return a particular value or to determine whether a path or registry

entry exists.

When called, the Get function will operate differently depending on whether the

value parameter is a path or registry type:

v If the value parameter is not a path or registry type, the Get function will return

the value in the value parameter.

v If the value parameter is a path or registry type, the Get function will evaluate to

path or registry to determine if it exists on the client computer. If it does exist,

the Get function will return the path or registry entry. If it does not exist, the Get

function will check the onEmpty parameter for a default value. If there is a

default value, the Get function will return it. If not, the Get function will return

an empty result.

This function uses the following parameters:

v value — A value that the Get function returns.

v onEmpty — A default value. This value is used if the value parameter is empty,

which may occur if the provided path or registry does not exist. This parameter

is optional.

For example, the following manifest uses a GetFileVersion to call a Get functions.

The Get function checks to determine whether a particular path exists. If it does,

the Get function returns that path. Otherwise, the Get function returns a default

path. The GetFileVersion then gets the version of the file at the returned path.

 GetVersion.function = GetFileVersion

 GetVersion.file.expr = GetPath

 GetPath.function = Get

 GetPath.value.path = c:/ACME/WebProgram/3.0/run.exe

 GetPath.onEmpty.path = c:/Program Files/ACME/WebProgram/ 3.0/run.exe

38

GetFileVersion

Use GetFileVersion to get the version number of a file on the client computer. When

called, this function reads the version number from a specific file and returns that

value.

This function uses the following parameters:

v file — The complete path to the file.

For example, in the following manifest a CompareVersion function is used to

determine whether the installed software is older than the current version. The

CompareVersion function calls a GetFileVersion function to retrieve the version of the

installed software, then compares this to the current version of 5.0.0.0.

 IsInstallOlder.function = CompareVersion

 IsInstallOlder.arg1.literal = 5.0.0.0

 IsInstallOlder.operation.literal = >

 IsInstallOlder.arg2.expr = GetInstalledVersion

 GetInstalledVersion.function = GetFileVersion

 GetInstalledVersion.file.path = c:/Program Files/ACME/WebProgram/3.0/run.exe

Note: The file’s version number may not always match the product’s version

number. Be sure to check the file itself when determining which version

number you want to look for.

NotOperation

Use the NotOperation if you want to evaluate an expression and return the opposite

value.

When called, the NotOperation calls another expression that is evaluated. If the

expression returns a non-empty value that is not false, then the NotOperation will

return a value of false. If the expression returns an empty value or a value of false,

then the NotOperation will return a value of true.

This function uses the following parameters:

v name — The name of the expression to evaluate. Note that this is a literal type.

For example, in the following manifest a NotOperation calls a CheckIfFileExists

function. If the file exists, the CheckIfFileExists function returns true. The

NotOperation then reverses this value, and returns false.

 ReverseCheck.function = NotOperation

 ReverseCheck.name.literal = CheckForWebProgram

 CheckForWebProgram.function = CheckIfFileExists

 CheckForWebProgram.file.path = c:/Program Files/ACME/WebProgram/3.0/run.exe

OrOperation

Use the OrOperation to determine if any one of a number of conditions are true,

and to return the value of the true condition.

When called, the OrOperation calls any number of additional expressions. Each

expression is evaluated in turn. If any expression returns a non-empty value that is

not false, the OrOperation ends (that is, no more expressions are evaluated) and

returns the value of that expression. If an expression returns an empty or false

value, the OrOperation moves on to the next expression. If all expressions called

return an empty or false value, the OrOperation returns the value of the last

expression called (either empty or false).

Using Manifests 39

For example, if the first expression returned an empty value, and the second

expression returned true, then the OrOperation would return true.

This function uses the following parameters:

v list — A comma delimited list of expressions to evaluate. Note that this is a

literal type.

For example, in the following manifest an OrOperation is used to call two Set

functions. The first Set function checks to see if a particular path exists. If that path

does not exist, the function returns empty, and the OrOperation calls the second Set

function. The second Set function checks to see if a different path exists. If that

path does not exist, the Set function returns a default value, which the OrOperation

also returns.

 SetPath.function = OrOperation

 SetPath.list.literal = CheckWebProgramPathOne, CheckWebProgramPathTwo

 CheckWebProgramPathOne.function = Get

 CheckWebProgramPathOne.value.path = c:/Program Files/ACME/WebProgram/

 CheckWebProgramPathTwo.function = Get

 SetWebProgramPathTwo.value.path = c:/ACME/WebProgram/3.0/

 SetWebProgramPathTwo.onEmpty.path = c:/Program Files/ACME/WebProgram/3.0/

RunOperation

Use the RunOperation to run a number of other expressions and combine the

results.

When called, the RunOperation calls any number of additional expressions. Each

expression is evaluated in turn, and the RunOperation returns all of the results as

an array. For example, if the first expression returns c:/ and the second expression

returns Program Files/IBM, then the RunOperation will return an array containing c:/,

Program Files/IBM.

This function uses the following parameters:

v list — A comma delimited list of expressions to evaluate.

For example, the following manifest uses a RunOperation to call two expressions.

The first expression determines where the WebProgram is installed, and sets the

WebProgramPath alias. The second expression gets the version of the WebProgram,

and sets the WebProgramVersion alias. Finally, the RunOperation returns the union

of the two, which might be c:/Program Files/WebProgram/3.0/run.exe, 2.5.2.0.

(Although this return value is not very useful, you can use the two aliases to refer

to the specific values.)

 DetermineVersion.function = RunOperation

 DetermineVersion.list.literal = SetPath, GetVersion

 SetPath.function = Set

 SetPath.value.path = c:/ACME/WebProgram/3.0/run.exe

 SetPath.onEmpty.path = c:/Program Files/ACME/WebProgram/3.0/run.exe

 SetPath.result.alias = WebProgramPath

 GetVersion.function = GetFileVersion

 GetVersion.file.path = <WebProgramPath>

 GetVersion.result.alias = WebProgramVersion

Set

Use Set to set the value of an alias or to determine whether a path or registry entry

exists.

40

When called, the Set function will operate differently depending on whether the

value parameter is a path or registry type:

v If the value parameter is not a path or registry type, the Set function will return

the value in the value parameter.

v If the value parameter is a path or registry type, the Set function will evaluate to

path or registry to determine if it exists on the client computer. If it does exist,

the Set function will return the path or registry entry. If it does not exist, the Set

function will check the onEmpty parameter for a default value. If there is a

default value, the Set function will return it. If not, the Set function will return

an empty result.

In either case, the Set function will also set the result parameter to the return value.

This is useful if you want to assign that value to an alias.

This function uses the following parameters:

v value — A value that the Set function returns.

v onEmpty — A default value. This value is used if the value parameter is empty,

which may occur if the provided path or registry does not exist. This parameter

is optional.

For example, the following manifest uses a RunOperation to call two expressions.

The first expression determines where the WebProgram is installed, and sets the

WebProgramPath alias. The second expression gets the version of the WebProgram,

and sets the WebProgramVersion alias. Finally, the Set operation returns an array

containing both results. (Although this return value is not very useful, you can use

the two aliases to refer to the specific values.)

 DetermineVersion.function = RunOperation

 DetermineVersion.list.literal = SetPath, GetVersion

 SetPath.function = Set

 SetPath.value.path = c:/ACME/WebProgram/3.0/run.exe

 SetPath.onEmpty.path = c:/Program Files/ACME/WebProgram/3.0/run.exe

 SetPath.result.alias = WebProgramPath

 GetVersion.function = GetFileVersion

 GetVersion.file.path = <WebProgramPath>

 GetVersion.result.alias = WebProgramVersion

SetParent

Use SetParent to return the parent of a given path or registry entry. For example, if

you had the path c:/Program Files/ACME/WebProgram/, SetParent would return

the parent of that path, which is c:/Program Files/ACME/. If the path or registry

entry ends in a specific filename or key name, SetParent will strip that name from

the path or registry entry.

Note that unlike Set, SetParent does not check to see if the path or registry entry

exists.

This function uses the following parameters:

v value — A path or registry entry.

For example, in the following manifest a SetParent function calls a Get function.

The Get function checks to see if a particular path exists. If it does, then it returns

that path, otherwise it returns a default path. The SetParent function then returns

the parent of that path. (That is, if the Get function returned c:/ACME/WebProgram/
3.0/run.exe, the SetParent function would return c:/ACME/WebProgram/3.0/.)

Using Manifests 41

SetPath.function = SetParent

 SetPath.value.expr = CheckFile

 CheckFile.function = Get

 CheckFile.value.path = c:/ACME/WebProgram/3.0/run.exe

 CheckFile.onEmpty.path = c:/Program Files/ACME/WebProgram/3.0/run.exe

Adding the Manifests to Your File System

Once you have created your manifests, you must add them to your file system:

v Master Manifest — Copy the master manifest to the appropriate server

directory.

v Application Manifests — Copy the application manifests to the appropriate

application directories.

v Package Manifests — Copy the package manifests to the appropriate package

directories. Be sure that the manifest matches the package file in that directory.

For more information about the file system, see “Using the Deployment Server File

System” on page 15.

42

Setting Up Your Web Page to Use Deployment Server

You can set up any web page to use Deployment Server. Normally, you’ll set up

your web site in one of two ways:

v As a central deployment site where users can go to get the latest software.

v As specific pages that deploy applications relevant to those pages. For example,

if your users need to complete a form as part of opening an account with your

company, you may want to deploy the WebProgram during the account

registration process.

To use Deployment Server, you need to include an applet tag in the appropriate

web page. Since Deployment Server relies on a number of client-side components,

such as Java support, you may also want your web pages to check for those

components before running the applet.

Deployment Server is shipped with a template web site. You can use this web site

to quickly set up a central deployment site, or as an example of how to set up a

site. The web pages contain all of the logic necessary to detect the client-side

components, and account for all possible scenarios when using Deployment Server.

Adding the Deployment Server Applet to a Web Page

You can add the Deployment Server applet to any web page using the standard

applet tag. However, the applet tag and the applet you include will differ

depending on whether your users are using Internet Explorer or a Mozilla browser.

You can account for this by setting up two different deployment pages, and using

Javascript to detect your user’s browser and direct them to the correct page.

To add an applet to a web page, you must:

v Add the applet tag to your HTML code.

v Copy the applet files to your web server.

Adding the Applet Tag

The applet tag has different attributes and parameters depending on whether your

users are using Internet Explorer or Firefox. Each tag can support only one

browser, and you will have to create different pages to support the different

browsers.

The applet tag uses the following attributes

code This is the class in the applet that your browser runs. It must be:

 com.PureEdge.ids.client.InstallApplet.class

height This is the height of the installation window the applet creates. You can

assign any value.

width This is the width of the installation window the applet creates. You can

assign any value.

© Copyright IBM Corp. 2003, 2006 43

archive

Include this attribute only for Firefox browsers. This attribute contains the

relative path to the Firefox applet. The filename of the applet is:

 IDS-NS.jar

 For example, the applet tag for a Mozilla browser might look like this:

 <applet code="com.PureEdge.ids.client.InstallApplet.class"

 height="200" width="500" archive="IDS-NS.jar">

The applet tag also requires the following parameters:

cabinets

Use this parameter only for Internet Explorer browsers. This parameter

contains the relative path to the IE applets. You must always include the

name of the applet, as shown:

 IDS-IE.cab

cancel_url

This is the URL of the web page that is loaded if the user cancels the

update.

fatal_url

This is the URL of the web page that is loaded if there is an error while

performing the update.

security_denial_url

This is the URL of the web page that is loaded if the user refuses to give

the applet the necessary permissions.

update_success_url

This is the URL of the web page that is loaded if the update is successful.

no_update_success_url

This is the URL of the web page that is loaded if no update is necessary.

locale This sets the locale of the applet. This must be the language code followed

by the country code. For example:

 fr_FR (french - France)

 pt_BR (portuguese - Brazil)

 zh_HK (traditional Chinese - Hong Kong)

Note: For a full list of supported languages and locales, see page 47.

For example, an applet tag for Internet Explorer might look like this:

 <applet code="com.PureEdge.ids.client.InstallApplet.class"

 height="200" width="500">

 <param name="cabinets" value="IDS-IE.cab">

 <param name="bgcolor" value="#D6D6CE">

 <param name="cancel-url" value="http://www.sample.com/

 cancel.html">

 <param name="fatal_url" value="http://www.sample.com/

 fatal.html">

 <param name="security_denial_url" value="http://www.sample.com/

 denial.html">

 <param name="update_success_url" value="http://www.sample.com/

 success.html">

 <param name="no_update_success_url" value=

 "http://www.sample.com/noupdate.html">

 <param name="locale" value="zh-HK">

 </applet>

44

Copying the Applet Files

Before you can copy the applet files, you must first configure and sign the applets

using the Signing Tool. For more information, see “Configuring Deployment

Server” on page 9.

The Signing Tool produces two WAR files and three applet files:

v ServerIDS.war

v IDS.war

v IDS-IE.cab

v IDS-NS.jar

You must copy IDS-IE.cab to the location specified by the cabinets parameter of the

applet tag, and you must copy IDS-NS.jar to the location specified by the archive

attribute of the applet tag.

Note: Each applet tag is specific to either Internet Explorer or Firefox. If you are

supporting both IE and Firefox, you will need to create multiple web pages

with different applet tags. For more information, see “Adding the Applet

Tag” on page 43.

About the Template Web Site

Deployment Server includes a template web site. This site include all of the

functionality necessary to:

v Detect the user’s configuration.

v Warn the user if they do not have the right configuration.

v Explain and launch the update process.

v Inform the user of the result of the update.

This site provides a working sample of the functionality you might want to include

in your site. Optionally, you can quickly set up a Deployment Server site by using

these pages and making some simple changes.

Architecture of the Template Web Site

The template web site uses a number of pages to step the user through the update

process. The web site is a collection of JSP pages that use Javascript for detecting

the user’s configuration. Note that these pages were created using JSTL 1.0. For

more information about JSTL, see The JSTL Expression Language.

The following diagram shows how the JSP pages are linked:

Setting Up Your Web Page to Use Deployment Server 45

http://www.phptr.com/articles/article.asp?p=30946&seqNum=1

Index

Logic

Fatal

Update
Success

No Update
Success

No Operating
System

Invalid OS

No Java or
Javascript
Support

Error Occurred

Update Completed
Successfully

No Update Needed

All Components
Detected

Support

1

23

9

4

5

7

Access DeniedSecurity
Denied

8

Installation

6

Each step corresponds to one or more JSP pages, and performs one or more

actions, as listed:

 Step Action JSP Page

1 This is the first page the user sees. It lists the end-user

system requirements for using Deployment Server and

links to step 2.

index.jsp

2 This is an invisible page that uses Javascript to

determine if the user has the correct configuration:

v If users do not have the correct configuration, they are

sent to step 3.

v If the user’s system is configured correctly, this page

determines which browser they are using, and links to

the appropriate page in step 4.

logic.jsp

3 If the user systems are not configured correctly, they are

directed here.

noSupport.jsp

46

Step Action JSP Page

4 This page contains the Deployment Server applet tag.

The user’s browser loads the Deployment Server applet,

which begins the update process.

The applet is specific to the browser in use, so there is a

separate page for each type of browser:

v Internet Explorer

v Firefox

Once the update is complete, the applet automatically

loads the next page, depending on the results:

v If an error occurs, the applet loads step 5.

v If the update is successful, the applet loads step 6.

v If no update is required, the applet loads step 7.

v If the user refuses to give the applet the necessary

security permissions, the applet loads step 8.

IEInstallation.jsp

NSInstallation.jsp

5 If an error occurs during installation, the applet loads

this page.

fatal.jsp

6 If the update is successful, the applet loads this page. updateSuccess.jsp

7 If no update is required, the applet loads this page. noUpdateSuccess.jsp

8 If the user refuses to give the applet the necessary

security permissions, the applet loads this page.

securityDenied.jsp

9 This page provides information about getting help with

Deployment Server. Users can link to this page from

most of the other pages in the application.

support.jsp

Using the Template Web Site

If you use the template web site as a basis for your own Deployment Server web

site, you will probably want to make some changes to the site to internationalize it

and to maintain your own corporate image. Use the following JSP files to make

this easier:

v document_start.jsp — This includes the common elements from the header of

each page.

v document_body.jsp — This includes the common elements from the body of

each page.

v document_end.jsp — This includes the common elements from the footer of

each page.

If you edit these three files, you can change the basic look of the site to match your

needs without having to edit the content or reconstruct the pages yourself.

You should make these changes to the appearance of the site before you configure

and sign the applet. This will allow you to re-use your changes for each virtual

server you want to set up.

Before you can edit the pages, you will have to extract them from the WAR file.

You can then modify the files, and repackage them.

Note: These JSP pages have been localized to support a number of languages and

locales. The version that the users see are displayed based on the language

Setting Up Your Web Page to Use Deployment Server 47

settings found on users’ computers. These pages also allow users to select a

language or locale from a drop-down list. This list includes:

v Chinese

– Simplified Han (China and Singapore)

– Traditional Han, Hong Kong

– Traditional Han, Taiwan
v Croatian

v Czech

v Danish

v Dutch

v English

v French

v German

v Greek

v Hungarian

v Italian

v Japanese

v Korean

v Norewegian Bokmål

v Polish

v Portuguese

– Brazil

– Portugal
v Romanian

v Russian

v Slovak

v Slovenian

v Spanish

v Swedish

v Turkish

Modifying the Template Web Site

To modify the template web site:

1. Locate the IDS.WAR file that was installed with Deployment Server.

2. Rename the WAR file to IDS.zip.

3. Unzip the file.

4. Modify the .jsp pages as required.

5. Zip the .jsp pages, maintaining the same file list and structure as the original.

6. Rename the new zip file to IDS.war.

Once you have produced the new IDS.WAR file, you can use it in the

configuration and signing process. For more information, see ″Configuring and

Installing the Deployment Server Server and Applet″ .

48

Troubleshooting

Why did the Signing Tool fail to sign my certificate?

If you copy a signing certificate to your Mozilla-based browser certificate

store, you must ensure that the certificate is trusted. In many cases,

Mozilla-based browsers do not automatically mark the certificate as

trusted. If the certificate is not trusted, the Signing Tool will fail.

I created a new virtual directory, but Deployment Server does not recognize it.

If you add a new virtual server directory to your Deployment Server file

system, you may need to restart your servlet runner to make the

Deployment Server recognize the new directory.

Deployment Server stopped creating log files.

If you want to modify the Deployment Server log file in any way

(trimming, deleting, and so on), you must shut down the servlet runner

first. If you do not, Deployment Server may stop logging, or other

problems may occur.

Deployment Server does not recognize my deployment package.

WinZip 9 (and above) includes a Java compression method that is not

supported by Deployment Server. If you create a deployment package

using WinZip 9, Deployment Server may not be able to read it. Make sure

you create deployment packages using versions of WinZip prior to version

9, or use other basic methods of creating zip packages.

© Copyright IBM Corp. 2003, 2006 49

50

Appendix. Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in

other countries. Consult your local IBM representative for information on the

products and services currently available in your area. Any reference to an IBM

product, program, or service is not intended to state or imply that only that IBM

product, program, or service may be used. Any functionally equivalent product,

program, or service that does not infringe any IBM intellectual property right may

be used instead. However, it is the user’s responsibility to evaluate and verify the

operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter

described in this document. The furnishing of this document does not grant you

any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM

Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation

Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other

country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS

PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER

EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS

FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or

implied warranties in certain transactions, therefore, this statement may not apply

to you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be

incorporated in new editions of the publication. IBM may make improvements

and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for

convenience only and do not in any manner serve as an endorsement of those Web

sites. The materials at those Web sites are not part of the materials for this IBM

product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it

believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 2003, 2006 51

Licensees of this program who wish to have information about it for the purpose

of enabling: (i) the exchange of information between independently created

programs and other programs (including this one) and (ii) the mutual use of the

information which has been exchanged, should contact:

IBM Corporation

Office 4360

One Rogers Street

Cambridge, MA 02142

U.S.A.

Such information may be available, subject to appropriate terms and conditions,

including in some cases, payment of a fee.

The licensed program described in this information and all licensed material

available for it are provided by IBM under terms of the IBM Customer Agreement,

IBM International Program License Agreement, or any equivalent agreement

between us.

Trademarks

The following terms are trademarks of International Business Machines

Corporation in the United States, other countries, or both:

AIX

IBM

Workplace

Workplace Forms

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of

Microsoft Corporation in the United States, other countries, or both.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the

United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of

others.

52

Index

A
alias parameter 32

aliases
about 33

InstallApplication alias 34

InstallApplicationDirectory alias 34

InstalledApplicationVersion alias 34

InstalledPackageDirectory alias 34

InstallPackage alias 34

InstallPackageDirectory alias 34

using aliases in manifests 33

AndOperation function 35

applet
about 3

adding the applet to your web

page 43

configuring the applet 9

copying the applet files to your

server 45

dialogs shown by the applet 4

security warning 4, 12

signing the applet 13

application directories
about 15

setting up the application

directories 17

application manifests
about 21

creating an application manifest 24

architecture
architecture of the template web

site 45

IDS system architecture 3

C
certificates, code signing See code signing

certificates 10

CheckIfFileExists function 36

CheckIfRegistryExists function 36

code signing certificates
obtaining 10

preparing 10

CompareVersion function 36

configuring
configuring the applet 9

configuring the server 9

configuring the Signing Tool 11

conventions, document 1

D
dates, using date ranges in manifests 23

decisions, how manifests make

decisions 21

DetermineUpdate function 37

directories
about the application directories 15

about the package directories 15

about the root directory 15

directories (continued)
about the server directories 15

setting up the application

directories 17

setting up the package directories 17

setting up the root directory 16

setting up the server directories 17

document conventions 1

document_body.jsp 47

document_end.jsp 47

document_start.jsp 47

E
end-user experience 4

expressions
about expressions 30

adding an expression to a

manifest 30

using nested expressions 31

F
file system

about 15

adding manifests to your file

system 42

copying packages to the file

system 20

how IDS uses the file system 16

setting up the file system 16

filenames, for manifests 22

functions
about functions 30

about the result parameter 35

AndOperation 35

calling a function in a manifest 30

calling functions from other

expressions 31

CheckIfFileExists 36

CheckIfRegistryExists 36

CompareVersion 36

DetermineUpdate 37

function descriptions 35

Get 38

GetFileVersion 39

NotOperation 39

OrOperation 39

RunOperation 40

Set 40

SetParent 41

G
Get function 38

GetFileVersion function 39

H
hierarchy, about the manifest

hierarchy 21

htmlParam parameter 32

I
IDS

IDS system architecture 3

IDS system requirements 7

overview of IDS 3

setting up IDS 7

IDS applet See applet 9

IDS File System See file system 15

IDS server See server 9

InstallApplication alias 34

InstallApplicationDirectory alias 34

installation progress 4

InstalledApplicationVersion alias 34

InstalledPackageDirectory alias 34

InstallPackage alias 34

InstallPackageDirectory alias 34

Internet Deployment Server See IDS 3

J
JSP pages

about 45

document_body.jsp 47

document_end.jsp 47

document_start.jsp 47

K
key terms 2

M
manifest.properties 22

manifests
about 21

about the application manifests 21

about the manifest hierarchy 21

about the master manifest 21

about the package manifests 21

adding an expression to a

manifest 30

adding manifests to your file

system 42

calling a function in a manifest 30

creating a master manifest 23

creating a package manifest 26

creating an application manifest 24

creating manifests 22

how manifests make decisions 21

manifest filename 22

using date ranges in manifests 23

master manifest
about 21

© Copyright IBM Corp. 2003, 2006 53

master manifest (continued)
creating a master manifest 23

N
NotOperation function 39

O
OrOperation function 39

P
package directories

about 15

setting up the package directories 17

package manifests
about 21

creating a package manifest 26

packages
about 19

copying packages to the file

system 20

creating your own packages 19

using packages from IBM 19

parameter, result 35

parameters
about 32

alias paramater 32

htmlParam parameter 32

parameter types 32

R
requirements, system 7

result parameter 35

root directory
about 15

setting up the root directory 16

RunOperation function 40

S
security warning, applet 4, 12

server
configuring the server 9

copying the applet files to your

server 45

server directories
about 15

setting up the server directories 17

servlet
about 3

Set function 40

SetParent function 41

setting up
setting up IDS 7

setting up your web page to use

IDS 43

signing the applet 13

Signing Tool
configuring the Signing Tool 11

using the Signing Tool 13

subroutines, using nested expressions 31

system architecture, IDS 3

system requirements 7

T
template web site

about the template web site 45

architecture of the template web

site 45

modifying the template web site 48

using the template web site 47

terms, key 2

Tool, Signing See Signing Tool 11

types
types of functions 35

types of parameters 32

U
user experience 4

W
WAR files

about the WAR files 14

installing the WAR files 14

web page
adding the applet to your web

page 43

setting up your web page to use

IDS 43

web site
about the template web site 45

architecture of the template web

site 45

modifying the template web site 48

using the template web site 47

54

����

Program Number: 5724-N08

Printed in USA

G325-2594-00

	Introduction
	About This Manual
	Who Should Read This Manual
	Document Conventions
	Key Terms
	Backwards Compatibility

	Overview of Deployment Server
	System Architecture
	End-User Experience

	Setting Up Deployment Server
	System Requirements
	Setup Instructions
	Setting Up to Deploy Applications Supplied by IBM
	Setting Up to Deploy Your Own Applications

	Configuring Deployment Server
	Downloading Additional Tools
	Microsoft Cabinet Software Development Kit
	Authenticode for Internet Explorer 5.0

	Obtaining Code Signing Certificates
	Preparing the Code Signing Certificate

	Updating the WAR file
	Configuring the Signing Tool
	Configuring Applets for Virtual Servers

	Using the Signing Tool
	Running the Signing Tool

	Installing the WAR files

	Using the Deployment Server File System
	About the Deployment Server File System
	How Deployment Server Uses the File System
	Setting Up the File System
	Deployment Server Root Directory
	Server Directories
	Application Directories
	Package Directories

	Using Packages
	Using Packages Provided by IBM
	Creating Your Own Packages
	Copying Packages to the Deployment Server File System

	Using Manifests
	About the Manifest Hierarchy
	How Manifests Make Decisions
	Creating Manifests
	Using Date Ranges in Manifests
	Creating a Master Manifest
	Creating an Application Manifest
	Creating a Package Manifest

	About Functions
	Adding Expressions to a Manifest
	Using Nested Expressions
	Parameter Types
	Using Aliases in Manifests
	Predefined Aliases

	Function Details
	About the Result Parameter
	Function Descriptions
	AndOperation
	CompareVersion
	CheckIfFileExists
	CheckIfRegistryExists
	DetermineUpdate
	Get
	GetFileVersion
	NotOperation
	OrOperation
	RunOperation
	Set
	SetParent

	Adding the Manifests to Your File System

	Setting Up Your Web Page to Use Deployment Server
	Adding the Deployment Server Applet to a Web Page
	Adding the Applet Tag
	Copying the Applet Files

	About the Template Web Site
	Architecture of the Template Web Site
	Using the Template Web Site
	Modifying the Template Web Site

	Troubleshooting
	Appendix. Notices
	Trademarks

	Index

